Many types of research may be done with your samples. Some studies may do genetic research to look at your DNA and genes, including an examination of genetic variants. Others may look at proteins and other products made by your body. Some studies may only be interested in your lifestyle habits, medical history, or environmental exposures.

To date, the Partners HealthCare Biobank has provided samples or data to more than 80 research studies, some of which are described below. Please click on each study to view more information.

Optimizing Breast Cancer Screening Through Population-Based ResearchJennifer Haas, MD, MSPH, Department of Medicine at Brigham and Women’s Hospital

Dr. Haas and her team are working with the Population-based Research Optimizing Screening through Personalized Regimens (PROSPR) program, a major research effort funded by the National Cancer Institute, to find new ways to improve breast cancer screening and diagnosis. The goal of PROSPR is to improve screening methods for breast, colorectal, and cervical cancer. Brigham and Women’s Hospital, the Geisel School of Medicine at Dartmouth College, the University of Pennsylvania, and the University of Vermont are the leading breast cancer research sites for the PROSPR program.

About 1 in 8 women will develop breast cancer in her lifetime. It is crucial that patients who are screened for breast cancer are seen at the right time, using the test that is best suited for them. Using data from the Biobank health information surveys, the PROSPR program was able to identify women with a family history of breast cancer. This information helped Dr. Haas and her team determine a woman’s risk of breast cancer risk to evaluate their use of screening tests. The health information questionnaire is an important component of the Biobank because this information helps researchers understand how family history contributes to the treatment and prevention of disease. By integrating family history into breast cancer screening practices, screening can be personalized to the patient, eventually moving away from the “one size fits all” approach.

Restoring the Immune System after Radiation InjuriesJames Lederer, PhD, Department of Surgery at Brigham and Women’s Hospital

Dr. James Lederer is researching potential treatment strategies for people who would be hurt in a radionuclear event, such as a nuclear blast, by radiation exposure and potentially by traumatic injury, such as a burn or infection. There has been little research into the injuries incurred during a nuclear blast, and there are limited treatment options for protecting the potentially high number of people that might be injured in case of such an event. Dr. Lederer is investigating ways to restore immune system function after exposure to radiation or radiation combined with traumatic injury. He is using samples from the Partners Biobank to test his hypothesis that stimulating the receptors for a protein called TLR9 might help protect people who are hurt in a radionuclear event. Based on Dr. Lederer’s work so far, it looks like TLR9 might play a role in restoring the immune system after it has been weakened by radiation and trauma. This work could help advance the potential development of therapies for radiation and radiation combined with injury.

Testing the Effect of Genetic Variation on the Response to a Mixed Meal Tolerance TestGeoffrey A. Walford, MD and Jose C. Florez, MD, PhD, Diabetes Unit at Massachusetts General Hospital

Type 2 diabetes is a disease that is influenced by genetics and by other factors. Some genetic risk factors for type 2 diabetes may change the way our bodies respond to diet, increasing the likelihood of developing diabetes, or the way our bodies respond to metformin, a medication that treats type 2 diabetes and can prevent type 2 diabetes.  This study is examining how commonly occurring genetic risk factors for type 2 diabetes influence the response to a specially prepared breakfast, known as a mixed meal tolerance test. All individuals in the study are provided the mixed meal tolerance test before and after taking 5 days of metformin. We have used the Biobank to identify and recruit individuals with a specific genetic risk factor for type 2 diabetes (variation at SLC16A11), but all individuals who qualify are welcome to participate in this study, entitled A study to understand the influence of common genetic variation at SLC16A11 and other genes on the physiologic response to a mixed meal tolerance test (SIGMA2 MGH).

The Genetics of Psychiatric DisordersJordan Smoller, MD, ScD Department of Psychiatry at Massachusetts General Hospital

As a member of the Psychiatric Genomics Consortium, Dr. Smoller and his colleagues are using 1,000 DNA samples from the Biobank to investigate the genetics of complicated psychiatric disorders such as autism, bipolar disorder, and depression. The samples are providing invaluable data for several large-scale studies that are investigating the genetic markers associated with psychiatric diseases. The goal of these studies is not only to identify genetic markers associated with psychiatric disorders, but to use these findings to better understand the biology behind these disorders. Eventually, such findings may enable the development of more targeted and effective treatments for individuals who live with psychiatric illness.

An Examination of the Genetic Basis for Multiple Sclerosis (MS)Philip De Jager, MD, PhD, Department of Neurology at Brigham and Women’s Hospital

The Biobank subjects were used as control subjects in the largest genetic study of multiple sclerosis (MS) to date. Involving over 115,000 subjects, this project is nearing completion and has identified over two hundred different genes involved in the onset of this autoimmune disease that attacks the brain and spinal cord of young adults. The study generated data from several hundred thousand genetic variants found throughout the human genome. Moreover, the data generated from this study have been returned to the Partners Biobank and have been repurposed by other investigators to support their studies.

Discovering Novel Genes Linked to Hypertrophic Cardiomyopathy (HCM)Christine E. Seidman, MD, Division of Cardiovascular Medicine at Brigham and Women’s Hospital

Hypertrophic Cardiomyopathy (HCM) is a cardiac disease that causes abnormal thickening of the heart muscle. Patients experience symptoms ranging from shortness of breath and chest pain, to palpitations, fainting, abnormal heart rhythms, and heart failure. The most dramatic presentation of HCM is sudden cardiac death which is the leading cause of sudden death in young athletes. As an inheritable heart disorder, it is the most common single gene cardiac disorder. Dr. Christine Seidman and her research team discovered the first gene that causes HCM many years ago. Despite progress in earlier diagnosis of HCM through clinical genetic testing, a causal mutation is not identified in all patients with HCM. The genetic causes for HCM are unknown in approximately 50% of patients who have no family history of this disorder. By utilizing the power of the Biobank to perform targeted gene sequencing and/or broad-based sequencing, Dr. Seidman and her team are identifying new HCM genes in patients with uninformative clinical genetic testing. 

The Role of Viruses and Antiviral Antibodies in Chronic DiseasesStephen J. Elledge, PhD, Division of Genetics at Brigham and Women’s Hospital

Viruses are thought to initiate or potentiate the pathogenesis of a variety of chronic diseases. Dr. Elledge and his team are applying their VirScan technology to samples from patients with chronic diseases in the Partners Biobank to identify specific viruses associated with each disease. VirScan is a high-throughput assay that can detect antiviral antibodies, and thus prior viral infection, for all known human viruses. Using a large number of samples from the Biobank will help uncover any subsets of patients whose diseases are virus-associated. Identifying the specific virus will provide insight into disease mechanism as well as inform development of diagnostics and therapeutics.

A Study of CalciphylaxisSagar Nigwekar, MD, MMSc, Division of Nephrology at Massachusetts General Hospital

Sagar Nigwekar, MD, is utilizing the Partners Biobank to study a devastating disease called calciphylaxis. Calciphylaxis is caused by a buildup of calcium in the blood vessels that supply the skin tissue. This results in the formation of purple or black lesions of dying skin tissue which become life threatening when infected. Working in collaboration with Dr. Nigwekar, the Partners Biobank has become the world’s largest repository of blood samples for this rare condition.  Because of the rarity of the disease and the fact that so little is understood about the underlying causes of the disease, pharmaceutical companies have been reluctant to devote resources to it. However at MGH, promising preliminary analysis of the blood samples has led to a randomized clinical trial which started in January 2015.

The Impact of High Uric Acid on Cardiometabolic Risk (HUMETS)Seoyoung C. Kim, MD, ScD and Daniel H. Solomon, MD, MPH, Division of Rheumatology, Immunology and Allergy at Brigham and Women's Hospital

Gout or gouty arthritis is a common inflammatory arthritis caused by high uric acid levels. Recent evidence has shown that high levels of uric acid may also be associated with other health risks, especially increased risk of cardiovascular disease and type 2 diabetes. Dr. Kim and Dr. Solomon are using Biobank samples and enrolling eligible Biobank patients in a study that investigates associations between high levels of uric acid and systemic inflammation, high blood sugar, impaired kidney function, and cardiovascular disease.    

Biomarkers of Tolerance in Pediatric Milk Allergy Jessica Savage, MD, MHS, Division of Immunology, and Allergy at Brigham and Women’s Hospital

Milk allergy is the most common food allergy among young children. Biomarkers, or proteins on cells in the blood, may play a role in children and adults’ ability to tolerate milk. Dr. Savage and her team are working with the Partners Biobank to enroll patients in an observational milk allergy research study that they hope will help them understand the molecular and genetic pathways involved in food allergy, and the impact of environmental exposures on food allergy. Previous research in this area was limited by an inability to characterize patients’ milk tolerance in a precise way. By using an oral food challenge where patients will ingest safe quantities of cooked and/or uncooked milk products and following these patients over time, Dr. Savage hopes to make progress in this area.

The Blood Markers of Lung Disease (Peripheral Blood Biomarkers in IPF)Avignat, Patel, MD, Division of Pulmonary and Critical Care at Brigham and Women’s Hospital

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disorder with very poor prognosis and no known treatment. Early identification of the disease may allow a better understanding of its root causes and potential treatments. Dr. Patel and his team are looking for blood markers that would help identify people who are a risk of developing IPF. Current research is focused on comparing a panel of blood markers in the blood samples of people who have IPF and people who do not have IPF.

Integrating Genetic Information into Clinical Care (The MedSeq™ Project)Robert Green, MD, Division of Genetics at Brigham and Women’s Hospital and Christine E. Seidman, MD, Division of Cardiology at Brigham and Women's Hospital

The MedSeq™ Project will explore how patients and their physicians interpret information from a person’s entire genome to use it in clinical care. Every cell in a person’s body contains instructions, called DNA, which tell the body how to grow, develop and function. The entire set of instructions is called the genome. Recently, scientists have developed technology, called whole genome sequencing (or, “WGS”), which allows them to sequence or “read” most of the genes in a person’s DNA. Right now, WGS is not used very often because it’s expensive and we don’t always know how to use all of the information. However, as WGS becomes less expensive and easier to understand, it will become more widely used. It is important to understand how patients and their physicians interpret and use the information from WGS before it becomes a common test. Patients enrolled in MedSeq will be invited to co-enroll in the Partners Biobank in order to this valuable information with other researchers to facilitate medical discoveries.

The Role of Inflammatory Pathways in Cardiovascular Disease for Patients with Inflammatory Bowel DiseaseAshwin Ananthakrishnan, MD, Division of Gastroenterology at Massachusetts General Hospital

Cardiovascular disease is a leading cause of death and disability and inflammation has been shown to lead to the disease.  Dr. Ananthakrishnan and his team are using the Partners Biobank samples to provide insight into mechanisms that may play a role in the high rate of cardiovascular disease in patients experiencing the autoimmune syndrome Inflammatory Bowel Disease (IBD). Using a large number of samples from the Biobank will help to uncover the genetic links between inflammation in IBD patients and subsequent cardiovascular disease.    

The Role of Genes in Pain Tolerance for Slipped Discs (SNP Study)Joseph H. Schwab, MD, MS, Department of Orthopedics at Massachusetts General Hospital and Christopher Bono, MD, Department of Orthopedics at Brigham and Women's Hospital

The goal of the SNP study is to understand the relationship between genes and pain tolerance in patients with spinal disk herniation. A spinal disk herniation (a slipped disk) results from a tear in the ring surrounding a spinal disk causing the central portion of the disk to bulge out.  This protrusion pressing on the nerve root causes both inflammation and pain. Treatments for this condition include oral painkillers, spinal steroid injections physical therapy or surgery.  Research has shown that the pain from a herniated disk improves over time whether a patient elects to have surgery or not.  Therefore the primary reason patients choose surgery is to ease the pain that they cannot tolerate. Genes may play a role in difference in pain tolerance among patients. The SNP study researchers look at small differences in DNA that may cause differences in pain tolerance for patients suffering spinal disk hernias. The Partners Biobank is collaborating with this study by processing and storing samples taken from patients with disk hernias that will later undergo genetic testing.  The hope is that by finding genes which are associated with pain tolerance, doctors could identify patients at high risk and help them make better informed decisions for treatment.  

The Biology of Rheumatic Diseases (PROSET-HD)Michael Brenner, MD, PhD, Division of Rheumatology, Immunology and Allergy at Brigham and Women's Hospital

The BWH Human Immunology Center is investigating changes in the immune system that occur in rheumatic diseases such as rheumatoid arthritis, lupus, and giant cell arteritis in a project called PROSET-HD (Profiling of Cell Subsets in Human Disease). This study, lead by Dr. Michael Brenner and Dr. Deepak Rao, Fellow in Rheumatology, compares immune cells in the blood from patients with and without inflammatory disease. The goal is to discover new ways to identify and monitor disease and new possibilities of the treatments for autoimmune diseases. The Partners Biobank is collaborating with the Human Immunology Center to provide recruitment support and related health to health information, which are essential to the project’s success. The blood samples and health information related to samples that patients provide to the Human Immunology Center and the Partners Biobank will help researchers understand the changes in the immune system that cause autoimmune disease. 

The Genetics of Food Allergy (Discovery of Biomarkers for Immediate Hypersensitivity)Wayne Shreffler, MD, PhD, Pediatric Allergy & Immunology at Massachusetts General Hospital

The purpose of this study is to identify immune factors associated with allergic reactions to foods in order to better predict the likelihood and severity of hypersensitivity reactions. Current allergy testing is not very specific and does not offer clear information about which patients are at higher risk of having severe allergic reactions. These limitations are known to contribute to over-diagnosis and may contribute to unnecessarily restrictive diets, and overtreatment. Storing these samples in the Biobank will allow researchers to effectively investigate genetic factors that contribute to the presentations of severe allergic reactions in some patients with food hypersensitivities.

Research into How Genetics Contribute to Inflammatory Bowel Disease (BrITR) Sonia Friedman, MD and Joshua R Korzenik, MD, Division of Gastroenterology at Brigham and Women's Hospital

Inflammatory Bowel Disease (IBD) constitutes a significant health problem in the United States. Roughly 5 in 1,000 patients suffer from Crohn’s disease and Ulcerative colitis. Many patients with IBD require powerful medications and life changing surgeries to manage unpredictable flare-ups of their disease. The BrITR study is collaborating with the Partners Biobank to establish a registry of patients with inflammatory bowel disease to be used for future research. The goal of the BrITR study is to determine how genes and other factors contribute to IBD.  The biobanking resources that the Partners Biobank offers are integral to BrITR’s success. 

Diabetes and Cardiovascular Disease: Insight into Inflammatory PathwaysStanley Shaw, MD, PhD, Center for Systems Biology and Cardiology Division at Massachusetts General Hospital

Clinical information stored in a patient’s electronic health record (EHR) can become a tool to help researchers identify associations between a person’s health characteristics when studied using their genetic information as well.  In this project, investigators have identified a group of Partners Biobank patient samples using the data found in the EHR that will allow them to study the association between diabetes, cardiovascular disease, obesity and inflammatory markers.  Understanding the relationship between diabetes and inflammation might help us discover common pathways shared between diabetes and its complications, as well as with other auto-inflammatory diseases. 

Skin Disease Tissue Repository (SDTR)Joseph F. Merola, MD, MMSC, Department of Dermatology at Brigham and Women's Hospital

An autoimmune disorder is a condition that occurs when the immune system mistakenly attacks and destroys healthy body tissue. Many of these diseases, such as lupus and scleroderma, occur in the skin as well as internal organs.  The Skin Disease Tissue Repository is collaborating with the Partners Biobank to learn more about the risk factors and defects in the immune system that cause autoimmune diseases.  Researchers will analyze white blood cells from the skin and blood of patients with autoimmune diseases to identify factors that may increase the risk of developing disorders like lupus and scleroderma.

The Role of Genes in Brain Aneurysms (Gene Expression of Cerebral Aneurysms) Rose Du, MD, PhD, Department of Neurosurgery at Brigham and Women’s Hospital

A cerebral aneurysm is a weak or thin spot on a blood vessel that balloons out and fills with blood and causes swelling. This swelling can press on a nerve or surrounding tissue, leak or burst, which lets blood spill into the surrounding tissues (hemorrage). The formation of aneurysms is influenced by both genetic and environmental factors. The purpose of the GXCA project is to determine the genetic changes and biological reasons that predict the formation and growth of aneurysms. Results obtained from this study, in collaboration with Partners Biobank may generate new strategies to effectively diagnose, prevent, and treat aneurysm formation and rupture.

The Impact of NSAID Medications on Heart Disease (Personalized NSAID Therapeutic Consortium)Elizabeth Karlson, MD, Division of Rheumatology, Immunology, and Allergy at Brigham and Women’s Hospital

Non-steroidal anti-inflammatory drugs, or “NSAIDs” are a class of drugs that are commonly used to treat pain, reduce fevers, and reduce inflammation. Despite the therapeutic benefits NSAIDs offer, some patients have adverse reactions to this class of medications. Most notably, some patients who take NSAIDs may be at increased risk for cardiovascular events like a heart attacks and strokes. Dr. Elizabeth Karlson is leading a team of researchers to develop ways of predicting who is at risk for NSAID related cardiovascular events. Dr. Karlson and her team are using data and samples from the Partners Biobank to define clinical and genetic factors related to adverse events associated with NSAID use. 

Rheumatoid Arthritis and Cardiovascular DiseaseKatherine P. Liao, MD, MPH, Division of Rheumatology, Immunology, and Allergy at Brigham and Women’s Hospital

Coronary artery disease (CAD) is a leading cause of morbidity and mortality for patients with rheumatoid arthritis (RA).  A major reason why RA patients are at increased risk of CAD is from chronic inflammation, a hallmark of RA.  However the mechanism of how inflammation leads to increased CAD risk is not clear and is the focus of this study.  The Partners Biobank provided blood samples and health information that will help investigators to understand the association between RA and CAD.

The Role of Genes in Rheumatoid ArthritisI-Cheng Ho, MD, PhD and Hui-Hsin Chang, PhD, Division of Rheumatology, Immunology, and Allergy at Brigham and Women’s Hospital

Rheumatoid arthritis (RA) is an autoimmune disease that causes painful inflammation of the joints when the immune system attacks the body’s own cells. Dr. Ho’s lab used samples from the Partners Biobank to study how one gene (the PTPN22 gene) may contribute to the development of RA. Dr. Ho's group discovered that abnormal function of PTPN22 causes normal proteins to be modified in a way that causes the immune system to attack them. Understanding how this gene functions is a first step towards developing targeted treatments for patients with the gene.